QUESTION:
What is the procedure for using SURF152 to define both convection and radiation acting on one side of a mesh of SHELL131 layered shell elements having throug thickness conduction capability.


ANSWER:
An example input file is listed below. Procedure can be inferred from comments and commands appearing in the listing.



fini
/cle


C*********************************************************
C*** MODEL DEMONSTRATES PROCEDURE TO USE SURF152 TO
C*** CONVECT AND RADIATE HEAT AWAY FROM THE TOP
C*** SURFACE OF SHELL131 LAYERED THERMAL SHELL
C*** HAVING THRU THICKNESS CONDUCTION. A TRANSIENT IS
C*** PERFORMED.
C*********************************************************

/sys,del *.png

/vie,1,3,2,1
/vup,1,z
/esha,1
/pnu,mat,1
/num,1


C*********************************************************
C*** PARAMETERS
C*********************************************************
a=0.100 ! PLATE EDGE LENGTH (m)
t=0.010 ! PLATE THICKNESS (m)

k=1 ! PLATE THERMAL CONDUCTIVITY (W/m-C)

emsvty=1.0 ! EMMISSIVITY
formf=1 ! FORM FACTOR

Hc=5 ! CONVECTION COEFFICIENT (W/m^2-C)

Ht_area=500 ! HEAT FLUX APPLIED TO UNCOOLED SIDE OF PLATE (W/m^2)

T_env=21 ! ENVIRONMENT TEMPERATURE (C)

t_final=500 ! END OF THERMAL XSIENT

z_xtra=-1*t ! Z COORDINATE OF RADIATION XTRA NODE


C*********************************************************
C*** GEOMETRY
C*********************************************************
/prep7
rect,-a/2,a/2,-a/2,a/2


C*********************************************************
C*** ATTRIBUTES
C*********************************************************
et,1,131 ! PLATE (LAYERED THERMAL SHELL)

keyopt,1,3,0 ! UP TO 15 LAYERS, QUADRATIC TEMP THRU t
keyopt,1,4,1 ! ONE LAYER THRU t

sectype,1,shell ! SECTION PROPERTIES
secdata,t,1

mp,kxx,1,k
mp,dens,1,7800
mp,c,1,5


et,2,152 ! CONVECTION SURFACE EFFECT ELEMENTS

keyopt,2,4,1 ! NO MIDSIDE NODES
keyopt,2,8,2 ! EVALUATE Hc @ AVERAGE TEMP

r,2


QUESTION:
What is the procedure for using SURF152 to define both convection and radiation acting on one side of a mesh of SHELL131 layered shell elements having throug thickness conduction capability.


ANSWER:
An example input file is listed below. Procedure can be inferred from comments and commands appearing in the listing.



fini
/cle


C*********************************************************
C*** MODEL DEMONSTRATES PROCEDURE TO USE SURF152 TO
C*** CONVECT AND RADIATE HEAT AWAY FROM THE TOP
C*** SURFACE OF SHELL131 LAYERED THERMAL SHELL
C*** HAVING THRU THICKNESS CONDUCTION. A TRANSIENT IS
C*** PERFORMED.
C*********************************************************

/sys,del *.png

/vie,1,3,2,1
/vup,1,z
/esha,1
/pnu,mat,1
/num,1


C*********************************************************
C*** PARAMETERS
C*********************************************************
a=0.100 ! PLATE EDGE LENGTH (m)
t=0.010 ! PLATE THICKNESS (m)

k=1 ! PLATE THERMAL CONDUCTIVITY (W/m-C)

emsvty=1.0 ! EMMISSIVITY
formf=1 ! FORM FACTOR

Hc=5 ! CONVECTION COEFFICIENT (W/m^2-C)

Ht_area=500 ! HEAT FLUX APPLIED TO UNCOOLED SIDE OF PLATE (W/m^2)

T_env=21 ! ENVIRONMENT TEMPERATURE (C)

t_final=500 ! END OF THERMAL XSIENT

z_xtra=-1*t ! Z COORDINATE OF RADIATION XTRA NODE


C*********************************************************
C*** GEOMETRY
C*********************************************************
/prep7
rect,-a/2,a/2,-a/2,a/2


C*********************************************************
C*** ATTRIBUTES
C*********************************************************
et,1,131 ! PLATE (LAYERED THERMAL SHELL)

keyopt,1,3,0 ! UP TO 15 LAYERS, QUADRATIC TEMP THRU t
keyopt,1,4,1 ! ONE LAYER THRU t

sectype,1,shell ! SECTION PROPERTIES
secdata,t,1

mp,kxx,1,k
mp,dens,1,7800
mp,c,1,5


et,2,152 ! CONVECTION SURFACE EFFECT ELEMENTS

keyopt,2,4,1 ! NO MIDSIDE NODES
keyopt,2,8,2 ! EVALUATE Hc @ AVERAGE TEMP

r,2
rmore,1e-10



et,3,152 ! RADIATION SURFACE EFFECT ELEMENTS

keyopt,3,4,1 ! NO MIDSIDE NODES
keyopt,3,5,1 ! RADIATION REQUIRES XTRA NODE
keyopt,3,9,1 ! RADIATION WITH FORM FACTOR REAL CONST

r,3,formf,5.67e-8 ! FORM FACTOR, SB CONST
rmore,1e-10

mp,emis,3,emsvty


C*********************************************************
C*** FINITE ELEMENT MODEL
C*********************************************************
n,1,,,z_xtra ! DEFINE XTRA NODE

mat,1 $type,1 $real,1 $secnum,1 ! MESH PLATE
ames,all

mat,2 $type,2 $real,2 ! CONVECTION SURFACE EFFECT ELEMS
esurf

mat,3 $type,3 $real,3 ! RADIATION SURFACE EFFECT ELEMS
esurf,1


C*********************************************************
C*** BOUNDARY CONDITIONS
C*********************************************************
toffs,273
d,1,temp,T_env ! XTRA NODE TEMP

esel,s,type,,2 ! CONVECTION BC's ON CONVECTION SURF EFCT ELEMS
sfe,all,,conv,1,Hc
sfe,all,,conv,2,T_env

esel,s,type,,1 ! HEAT FLUX ON PLATE (SIDE OPPOSITE CONV & RAD SURFACE)
sfe,all,1,hflux,,Ht_area

alls ! SET TTOP=TEMP TO COUPLE SHELL131 TO SURF152
nsel,u,node,,1
*get,nnds,node,,count
nd=0
*do,i,1,nnds
nd=ndnext(nd)
ce,next,0,nd,temp,1,nd,ttop,-1
*enddo

fini


C*********************************************************
C*** SOLVE
C*********************************************************
/solu

anty,trans
time,t_final
autots,on
nsub,100,100,2
outres,all,all

kbc,1

tuni,t_env
alls
eplo
save
solv
fini


C*********************************************************
C*** POSTPROCESSING
C*********************************************************
/post1
esel,s,type,,1
nsle
layer,1
plns,temp ! PLATE TEMPERATURE CONTOUR
/sho,png $/rep $/sho,close $/wait,2
fini

/post26 ! TOP AND BOTTOM SURFACE TEMPS vs time
nsol,2,2,tbot,,T_hotside
nsol,3,2,ttop,,T_coolside
axl,y,Temperature (C)
plva,2,3
/sho,png $/rep $/sho,close $/wait,2

fini/post1

esel,s,type,,2 ! CONTOUR CONVECTED HEAT
etab,area,nmisc,1
etab,hfctot,smisc,2
sexp,hc_area,hfctot,area,1,-1
/ann,dele
/tla,-.25,.80,Convected Heat (W/m^2)
plet,hc_area
/sho,png $/rep $/sho,close $/wait,2

esel,s,type,,3 ! CONTOUR RADIATED HEAT
etab,area,nmisc,1
etab,hrtot,smisc,3
sexp,hr_area,hrtot,area,1,-1
/ann,dele
/tla,-.25,.80,Radiated Heat (W/m^2)
plet,hr_area
/sho,png $/rep $/sho,close $/wait,2

alls
ssum ! NET CONVECTED + RADIATED HEAT SHOULD BE 5W

*get,t_srfc,node,2,ttop ! EXPECTED RADIATED POWER (W/m^2)
qr_nom=(5.67e-8)*((t_srfc+273)**4 - (t_env+273)**4)
**** Entered By: swescott @ 04/28/2006 05:31 PM ****





Show Form
No comments yet. Be the first to add a comment!